Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nurziana Ngah, Najihah Dariman and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.071$
$w R$ factor $=0.139$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(1H-Indol-3-yl)-2-[3-(4-methoxybenzoyl)thioureido]propionic acid

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$, the 3-methylene- 1 H indole unit is nearly planar with a dihedral angle of $2.69(2)^{\circ}$ between the rings. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional network approximately parallel to the (011) plane.

Comment

The title compound, (I), is isostructural with 2-[3-(4-methoxybenzoyl)thioureido]-3-phenylpropionic acid methanol solvate, (II) (Ngah et al., 2005). The molecule maintains the cis-trans configuration with respect to the positions of the 3 -(1H-indole-3-yl)propionic acid and 4-methoxybenzoyl groups relative to the $\mathrm{C}=\mathrm{S}$ bond across their $\mathrm{C} 9-\mathrm{N} 2$ and C $9-\mathrm{N} 1$ bonds, respectively (Fig. 1).

The N3-C18 [1.360 (5)] and N3-C19 [1.355 (5) Å] bonds in the indole ring system are slightly shorter than the corresponding ones $[\mathrm{N} 1-\mathrm{C} 1=1.377$ (4) and $\mathrm{N} 1-\mathrm{C} 8=1.369$ (4) \AA] in 2-(2-acetamido-5-methylbenzoyl)-1 H -indole (Ravishankar et al., 2005). Other bond lengths and angles (Table 1) are in normal ranges (Allen et al., 1987) and comparable to those in (II).

The central carbonylthiourea (C8/C9/N1/N2/O2/S1) and 4methoxyphenyl ($\mathrm{C} 1-\mathrm{C} 6 / \mathrm{O} 1 / \mathrm{C} 7$) units are not planar with puckering amplitudes, Q_{T}, of $0.146(1)$ and $0.143(2) \AA$ (Cremer \& Pople, 1975). Rings A (C12/C13/C18/N3/C19) and $B(\mathrm{C} 13-\mathrm{C} 18)$ in the 3-methylene-1 H-indole system are each planar and they are nearly coplanar, with a dihedral angle of 2.69 (2) ${ }^{\circ}$. Ring A has a pseudo-twofold axis running through C 12 and the mid-point of the $\mathrm{N} 3-\mathrm{C} 18$ bond (Table 1).

There are three intramolecular hydrogen bonds, viz. N2$\mathrm{H} 2 A \cdots \mathrm{O} 2, \mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$ and $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~S} 1$, forming two pseudo-five-membered rings (C20/C10/N2/H2A/O3 and C9/ $\mathrm{N} 2 / \mathrm{C} 10 / \mathrm{H} 10 / \mathrm{S} 1$) and a pseudo-six-membered ring ($\mathrm{C} 8 / \mathrm{N} 1 / \mathrm{C} 9 /$ $\mathrm{N} 2 / \mathrm{H} 2 A / \mathrm{O} 2$). The crystal structure is stabilized by inter-

Received 27 January 2006
Accepted 2 February 2006

Figure 1

Molecular structure of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2
Packing diagram of (I), viewed down the c axis. Dashed lines denote intermolecular hydrogen bonds.
molecular hydrogen bonds (Table 2), forming a two-dimensional network approximately parallel to the (011) plane (Fig. 2).

Experimental

Equimolar solutions of 4-methoxybenzoyl isothiocyanate (9.65 g , 0.05 mol) and dL-tryptophan ($9.65 \mathrm{~g}, 0.05 \mathrm{~mol}$) in acetone (50 ml) were mixed and refluxed for 5 h . The mixture was filtered into a beaker containing some ice cubes. The resulting brown precipitate was washed with cold acetone-distilled water before drying and kept in a desiccator (yield $15.4 \mathrm{~g}, 78 \%$; m.p. 474.6-476.4 K). Recrystallization from chloroform yielded colorless single crystals suitable for X-ray analysis.

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=397.44$
Orthorhombic, $P b c n$
$a=18.247(4) \AA$
$b=14.083(3) \AA$
$c=14.736(3) \AA$
$V=3787.0(14) \AA^{3}$
$Z=8$
$D_{x}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 781 reflections
$\theta=1.8-25.0^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.19 \times 0.16 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-	3343 independent reflections
detector diffractometer	2772 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.043$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$(S A D A B S ;$ Bruker, 2000 $)$	$h=-21 \rightarrow 19$
$T_{\min }=0.962, T_{\max }=0.970$	$k=-13 \rightarrow 16$
18371 measured reflections	$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0428 P)^{2} \\
&+2.2534 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-C9	$1.689(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.390(4)$
O2-C8	$1.213(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.313(4)$
O3-C20	$1.199(4)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.448(4)$
O4-C20	$1.321(4)$	$\mathrm{N} 3-\mathrm{C} 19$	$1.355(5)$
N1-C9	$1.379(4)$	$\mathrm{N} 3-\mathrm{C} 18$	$1.360(5)$
C9-N1-C8	$127.6(2)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 1$	$117.3(3)$
C9-N2-C10	$123.8(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{S} 1$	$123.6(2)$
O2-C8-N1	$121.8(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{S} 1$	$119.1(2)$
O2-C8-C1	$122.6(3)$	$\mathrm{N} 3-\mathrm{C} 18-\mathrm{C} 17$	$129.9(4)$
C19-C12-C13-C18	$0.4(4)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 19-\mathrm{N} 3$	$0.3(4)$
$\mathrm{C} 19-\mathrm{N} 3-\mathrm{C} 18-\mathrm{C} 13$	$1.2(4)$	$\mathrm{C} 18-\mathrm{N} 3-\mathrm{C} 19-\mathrm{C} 12$	$-0.9(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18-\mathrm{N} 3$	$-1.0(4)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~S} 1$	0.98	2.64	$3.059(3)$	106
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.86	1.95	$2.628(3)$	135
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.86	2.37	$2.680(3)$	102
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 3^{\mathrm{i}}$	0.86	2.13	$2.955(3)$	160
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots$ 1 $^{\mathrm{ii}}$	0.86	2.64	$3.434(3)$	154
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~S}^{\text {iii }}$	0.82	2.40	$3.219(3)$	173
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.44	$2.986(4)$	118
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.53	$3.332(4)$	145

Symmetry codes: (i) $x,-y+2, z-\frac{1}{2}$; (ii) $-x+\frac{3}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $x,-y+2, z+\frac{1}{2}$.

H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-$ $\mathrm{H}=0.86 \AA$, and $\mathrm{C}-\mathrm{H}=0.93,0.96,0.97$ and $0.98 \AA$ for aromatic, methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for methyl and hydroxyl H atoms, and $x=1.2$ for all other H atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

organic papers

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Vesion 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ngah, N., Jusoh, A. \& Yamin, B. M. (2005). Acta Cryst. E61, o4307-o4309.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H. K. (2005). Acta Cryst. E61, o3291-o3293.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

